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Do Maxicharged Particles Exist?
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The critical charge Z, is estimated for elementary particles using a
Newton—Wigner position operator-inspired model. Particles with Z ~ Z,
(maxicharged particles), if they exist at all, can have unusual properties which
make them illusive objects, that are not easy to detect. Dirac’s magnetic poles
have a (magnetic) charge g > Z. This gives one more argument that it is
unexpected for pointlike monopoles to be found in our world, where a™! = 137,

The aim of this note is to raise a question, rather than to give answer
it. Why do all observed elementary (not composite) particles have small
electric charge |Z| = 1? May elementary particles with |Z] > 1 exist?

This question can be considered as an aspect of the charge quantization
mystery. Although this quantization can be understood in the framework of
grand unification theories'” or even in the standard model,? the most elegant
explanation dates back to Dirac’s seminal paper™®> on magnetic monopoles.
None of these approaches actually exclude the existence of multicharged
particles.

As small electric charges can more easily escape detection than big
charges, theorists are more willing to introduce the former in their theories.
So in the literature such exotic creatures can be found as millicharged® or
minicharged® particles. They have been sought experimentally,” but not yet
found. As for multicharged particles, only a few (to our knowledge) examples
have been suggested. A doubly charged Higgs boson was introduced in refs.
8 and a doubly charged (but composite) lepton in refs. 9 Neither of them
has been found as yet.!'?

'Joint Institute for Nuclear Research, 141 980, Dubna, Moscow Region, Russia.
2Budker Institute of Nuclear Physics, 630 090, Novosibirsk, Russia.
*For the inclusion of fractionally charged particles sce, for example, ref. 4.
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At least one reason can be imagined which makes big charges uncomfort-
able. It is well known"'? that when the charge on a nucleus increases, the
ground-state electron energy level in its Coulomb field lowered and for some
critical value of the charge, Z. = 170, plunges into the Dirac sea of negative
energy levels. After this the vacuum becomes unstable. So Z, determines an
“electrodynamic upper frontier” for the periodic system of chemical elements.

But a finite size of the nucleus, which removes the Coulomb field
singularity at the origin, plays an important role in reaching such a conclusion
and in the calculation of Z: The Dirac equation with bare Coulomb potential
becomes ill-defined for Z > 137. And fundamental elementary particles
(quarks, leptons, . . .) are believed to be pointlike. So at first sight the above-
described notion of critical charge does not make sense for them.

However, an arbitrarily precise localization is impossible for a relativistic
particle, as was realized a long time ago."'® This means that in relativistic
theory an elementary particle no longer can be considered as a pointlike
source for the Coulomb field.

The meaning of localization for relativistic particles has been carefully
investigated.!'*'> In particular, the most localized wavepacket for a spin-
zero particle with mass m, which does not contain any admixture of negative
frequencies, is given by the Newton—Wigner wave function!'¥

o\
U(r) ~ | =) Ksu(mr) (1)

r

where K, (r) is a modified Bessel function.

Unfortunately, ¥(r) in (1), belonging to the continuous spectrum, is not
normalizable and diverges at the origin as r~>2 But it cannot be expected
that the one-particle picture which is assumed in (1) remains valid for distances
r < m~'. Therefore, we may consider the following simple model for a
pointlike elementary particle with electric charge Ze:

if rSro

0
p2) = (Ze)—l p(r) = {Cr‘5’2K§,4(mr) it r>r 2)

Here p(r) stands for the charge density at a point r, and the constant C is
determined from the normalization condition

41 Jw p(nr2 dr = Ze 3
0

The cutoff parameter ry must obey ro < m~!. We have somewhat arbitrarily
take ro = 0.01m™". The prescription p = 0 when r < ry is a reflection of our
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desire to have (2) resemble the topological soliton model for the electron.!®4
Instead we may take p(r) = const = p(ry) for r = ry: the results do not
change significantly for massive enough particles, and for the lightest particle,
still in the realm of our interest, the difference does not exceed 15%. Having
in mind the qualitative nature of our argumentation, such subtleties will be
set aside. Note that in ref. 16 r; coincides with the classical electron radius
(137m)~!, giving some justification for our choice. If a charge e, probes the
spherically symmetric charge distribution (2), the potential energy of their
interaction is

V= —47a [% J, X% p(x) dx + jw xp(x) dx] ()]

0 r

where a = Z|ee,|/4m, and charges of opposite sign were assumed.

Now we consider Dirac’s equation, with the potential defined from
(2)~(4), for the group-state energy level in the situation when this level just
enters the negative energy sea, that is, E = —1, in units for which the probe
particle mass m; = 1. For m > my, this equation for the radial function G is"'"

. V. 1v] .
G—VG+[V(V+2)+;V:|G_O (5)

where dots designate derivatives, for example, G = dG/dr.
By the substitution G(r) = /V(r)¥(r), this equation takes a form which
is more convenient for numerical calculations:

. .. N2
. v, v o3[V _
¢+[V(v+2)+;v+5‘-/~z<v)]¢—o )

For large distances r > m™!, K%,,(mr) in (2) falls as e~2™. Therefore the
second term in (4) can be dropped for such distances and the first term,
because of the normalization condition (3), gives just the Coulomb potential
V(r) = —a/r, for which equation (5) is exactly solvable in terms of the
modified Bessel function of complex index?

G(r) ~ K;, (/8ar), v=2Ja?—-1 )]

Let us take some R >> (2m)~!. Equation (5) [in fact (6)] can be numerically
solved in the region 0 = r < R subject to the boundary conditions G(0) =
0, G(0) # 0. Then the smoothness of the logarithmic derivative at r = R
gives an equation which determines the critical coupling o:

*For another approach see ref. 17.
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The critical coupling so evaluated shows a weak dependence on the mass m
and changes from o, = 1.03 for m = 10% to &, = 1.1 for m = 20. These
numbers correspond to the choice R = 10m™". If we take R = 5m™! instead,
the modifications do not exceed a few percent. Roughly modeling the particle—
antiparticle situation by setting m = 2, we find a, =~ 2.5.

We infer the following main conclusion from the above considerations:
every pointlike electric charge Ze such that Z%e*/4 ~ Z2/137 > 2-3 destabi-
lizes the vacuum.

The actual value of o, can be even smaller if we remember that field-
theoretic effects decrease Z, in the case of the nucleus''® and some investiga-
tions show that a chiral phase transition is expected in strongly coupled QED
for o, =~ /3.0

In any case in the following we will treat o, = 2-3 as a fair estimate.
So Z. = 15-20 can be considered as an “electrodynamic upper frontier” for
pointlike elementary particles.

But there is quite a lot space from 1 to Z. Where are the particles
inhabiting this interval?

Particles with a = Z%/137 > 1 (we will call them maxicharged particles)
are of particular interest because their interactions are essentially nonperturba-
tive. For example, an “onium” from such a particle and antiparticle will decay
more readily into (n + 1) photons than into n photons because now Ze >
1. This means that in fact it decays into an infinite number of soft photons,
that is, into a classical field.

Another remarkable property of the maxicharged particles is that their
classical radius ry = a/m (o ~ Z*137) is bigger than their quantum size
(Compton wavelength) A = 1/m. Because of this property it is not very easy
to produce them in, for example, electron—positron collisions. If T ~ 1/m is
the production time of a maxicharged particle—antiparticle pair and 7, their

annihilation time, then@"
3
T A
—~a(-—-) =a2<1
To ro

So the pair is annihilated before they are created®"! This suggests that maxi-
charged particles can be rather illusive objects, irrespective of their masses.

In fact, the notion of maxicharged particles was introduced by
Schwinger.?? Below we repeat his arguments from which a more clearly
defined notion of maxicharged particles can be deduced.

3For a recent discussion see, for example, ref. 20.
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Electrodynamics with electric charges e, and magnetic charges g reveals
a duality symmetry which can be viewed as a rotation in the (e, g) space.
However, this symmetry should be spontaneously violated,®® that is, we
should have a definite direction for the electric axis in the (e, g) space. In
fact this direction can be guessed from the fact that only small charges
surround us in our world.?? First of all, let us introduce an invariant definition
of small charges®®: we will say that a particle with electric charge e, and
magnetic charge g, belongs to the category of small charges if

el + g2
4

<1 9)
Correspondingly big charges (maxicharged particles in our terminology) are
defined through

e; + g
=1 (10)
4w

If a and b are an arbitrary pair of small charges, then

2
€u8h ~ €8s\ _ e;t giep + g <1
47 47 %

an

On the other hand, Schwinger’s symmetrical quantization condition reads:

€a8b — €p8u
Cabb___ Chba _ 12

47 " (12)
where n is an integer.

Now (11) and (12) are compatible only if n = 0! Therefore, for any
pair of small charges we have??

8a_ 8
€4 €p

This means that small charges occupy a single line in the (e, g) space, and

it seems from our everyday experience that just this line is chosen as represent-

ing the electric charge axis after spontaneous breakdown of the duality symme-

try. In other words, none of the small charges possess any amount of magnetic

charge. Dyons can live only in the wonderland of maxicharged particles!
Now we turn to a more speculative line of reasoning. The most natural

symmetrical solution of Dirac’s (nonsymmetrical) quantization condition

eg _n

= - n an integer
47 2 &

would be e = g. So in such a hypothetical world singly charged particles
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will have a = e*4m = 0.5, and doubly charged particles would have a =
2. Clearly triply charged particles lie beyond the vacuum stability border if
we adopt the above-cited value for the critical coupling a, = 2-3. In fact
even doubly charged particles look suspicious enough. So maybe the absence
of multicharged particles is mere reminiscent of the epoch when there was
a full harmony between electrical and magnetic forces?

Note that for the above picture to have any chance to be valid, something
must happen to the scale in the duality space, not only to the orientation of
the electric axis, because we know quite well that a = (137)! and not 0.5!
Can we hope that the present value of the fine structure constant is associated
with the symmetry breaking between electric and magnetic forces and so can
be understood from purely symmetry considerations? Here we have a tempting
association that just from conformal (or scale) symmetry considerations Wyler
obtained his marvelous formula®®

W O (m\
16m3\5!/  137.03608

(For discussions of this formula, see refs. 25. Some different “derivations”
of this or similar formulas can be found in refs. 26, and for other attempts
to calculate the fine structure constant, see refs. 27.)

Maybe this “number in search of a theory”®® at last finds it in electro-
magnetic duality and its breaking?

Russian folklore says that “one simpleton can ask so much questions
that hundred sages fail to answer.” We hope that the questions raised in this
note do not fall into such a category.
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